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HPM Effects on Electronics

What role does Nonlinearity
and Chaos play in producing

HPM effects?
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OVERVIEW
HPM Effects on Electronics

Are there systematic and reproducible effects?
Can we predict effects with confidence?

Evidence of HPM Effects is spotty: 
Anecdotal stories of rf weapons and their effectiveness
---
Commercial HPM devices
E-Bomb (IEEE Spectrum, Nov. 2003)
etc. 

Difficulty in predicting effects given complicated coupling,
interior geometries, varying damage levels, etc.

Why confuse things further by adding chaos?
New opportunities for circuit upset/failure
A systematic framework in which to quantify and

classify HPM effects
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Overview/Motivation
“The Promise of Chaos”

• Can Chaotic oscillations be induced in electronic circuits 
through cleverly-selected HPM input?

• Can susceptibility to Chaos lead to degradation of system 
performance?

• Can Chaos lead to failure of components or circuits at 
extremely low HPM power levels?

• Is Chaotic instability a generic property of modern 
circuitry, or is it very specific to certain types of circuits 
and stimuli?

These questions are difficult to answer conclusively…
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Chaos
Classical: Extreme sensitivity to initial conditions

Manifestations of classical chaos:
Chaotic oscillations, difficulty in making long-term predictions, 
sensitivity to noise, etc.
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Chaos in Nonlinear Circuits

Many nonlinear circuits show chaos:
Driven Resistor-Inductor-Diode series circuit
Chua’s circuit
Coupled nonlinear oscillators
Circuits with saturable inductors
Chaotic relaxation circuits
Newcomb circuit
Rössler circuit
Phase-locked loops
…
Synchronized chaotic oscillators and chaotic communication

Here we concentrate on the most common nonlinear circuit element
that can give rise to chaos due to external stimulus: the p/n junction
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The p/n Junction

The p/n junction is a ubiquitous feature in electronics:
Electrostatic-discharge (ESD) protection diodes
Transistors

Nonlinearities:
Voltage-dependent Capacitance
Conductance (Current-Voltage characteristic)
Reverse Recovery (delayed feedback)

HPM input can induce Chaos through several mechanisms
Renato Mariz de Moraes and Steven M. Anlage, "Unified Model, and Novel Reverse Recovery 
Nonlinearities, of the Driven Diode Resonator," Phys. Rev. E 68, 026201 (2003). 

Renato Mariz de Moraes and Steven M. Anlage, "Effects of RF Stimulus and Negative Feedback 
on Nonlinear Circuits," IEEE Trans. Circuits Systems I: Regular Papers, 51, 748 (2004).
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Electrostatic Discharge (ESD) Protection Circuits
A New Opportunity to Induce Chaos at High Frequencies

in a distributed circuit

Circuit to
be protected

ESD 
Protection

Delay T

Schematic of
modern integrated
circuit interconnect

The “Achilles Heel” of modern electronics
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Vg = .5 V Period 1

Vg = 2.25 V Period 2

Vg = 3.5 V Period 4

Vg = 5.25 V Chaos
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Chaos in the Driven Diode Distributed Circuit
Simulation results

f = 700 MHz
T = 87.5 ps
Rg = 1 Ω
Z0 = 70 Ω
PLC, Cr = Cf/1000
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Simulation results

http://arxiv.org/abs/nlin.cd/0605037
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Experiment on the Driven Diode Distributed Circuit
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Experimental Bifurcation Diagram
BAT41 Diode @ 85 MHz

T ~ 3.9 ns, Bent-Pipe
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Chaos and Circuit Disruption
What can you count on?

Bottom Line on HPM-Induced circuit chaos
What can you count on?  → p/n junction nonlinearity
Time scales!  

Windows of opportunity – chaos is common but not present for all driving scenarios

ESD protection circuits are ubiquitous

Manipulation with “nudging” and “optimized” waveforms.
Quasiperiodic driving lowers threshold for chaotic onset

D. M. Vavriv, Electronics Lett. 30, 462 (1994).
Two-tone driving lowers threshold for chaotic onset

D. M. Vavriv, IEEE Circuits and Systems I 41, 669 (1994).
D. M. Vavriv, IEEE Circuits and Systems I 45, 1255 (1998).
J. Nitsch, Adv. Radio Sci. 2, 51 (2004).

Noise-induced Chaos:
Y.-C. Lai, Phys. Rev. Lett. 90, 164101 (2003).

Resonant perturbation waveform
Y.-C. Lai, Phys. Rev. Lett. 94, 214101 (2005).
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What needs further research?

Are nonlinearity and chaos the correct organizing principles for
understanding HPM effects?  

Effects of chaotic driving signals on nonlinear circuits 
(challenge – circuits are inside systems with a  frequency-dependent transfer function)

Unify our circuit chaos and wave chaos research

Uncover the “magic bullet” driving waveform that causes 
maximum disruption to electronics
S. M. Booker, “A family of optimal excitations for inducing complex dynamics in planar
dynamical systems,” Nonlinearity 13, 145 (2000).

A. Hübler, PRE (1995): Aperiodic time-reversed optimal
forcing function

Chaotic Driving Waveforms
Chaotic microwave sources
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Conclusions

The p/n junction offers many opportunities for HPM upset effects
Instability in ESD protection circuits (John Rodgers)
Distributed trans. line / diode circuit → GHz-scale chaos

GHz chaos paper: http://arxiv.org/abs/nlin.cd/0605037
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Simple Experiment
Phase Diagram
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Simple Experiment & Model
Phase Diagram Comparison
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